Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e26298, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404892

ABSTRACT

Electroencephalography (EEG) has been a fundamental technique in the identification of health conditions since its discovery. This analysis specifically centers on machine learning (ML) and deep learning (DL) methodologies designed for the analysis of electroencephalogram (EEG) data to categorize individuals with Alzheimer's Disease (AD) into two groups: Moderate or Advanced Alzheimer's dementia. Our study is based on a comprehensive database comprising 668 volunteers from 5 different hospitals, collected over a decade. This diverse dataset enables better training and validation of our results. Among the methods evaluated, the CNN (deep learning) approach outperformed others, achieving a remarkable classification accuracy of 97.45% for patients with Moderate Alzheimer's Dementia (ADM) and 97.03% for patients with Advanced Alzheimer's Dementia (ADA). Importantly, all the compared methods were rigorously assessed under identical conditions. The proposed DL model, specifically CNN, effectively extracts time domain features from EEG data in time, resulting in a significant reduction in learnable parameters and data redundancy.

2.
J Alzheimers Dis ; 95(4): 1667-1683, 2023.
Article in English | MEDLINE | ID: mdl-37718814

ABSTRACT

BACKGROUND: In pursuit of diagnostic tools capable of targeting distinct stages of Alzheimer's disease (AD), this study explores the potential of electroencephalography (EEG) combined with machine learning (ML) algorithms to identify patients with mild or moderate AD (ADM) and advanced AD (ADA). OBJECTIVE: This study aims to assess the classification accuracy of six classical ML algorithms using a dataset of 668 patients from multiple hospitals. METHODS: The dataset comprised measurements obtained from 668 patients, distributed among control, ADM, and ADA groups, collected from five distinct hospitals between 2011 and 2022. For classification purposes, six classical ML algorithms were employed: support vector machine, Bayesian linear discriminant analysis, decision tree, Gaussian Naïve Bayes, K-nearest neighbor and random forest. RESULTS: The RF algorithm exhibited outstanding performance, achieving a remarkable balanced accuracy of 93.55% for ADA classification and 93.25% for ADM classification. The consistent reliability in distinguishing ADA and ADM patients underscores the potential of the EEG-based approach for AD diagnosis. CONCLUSIONS: By leveraging a dataset sourced from multiple hospitals and encompassing a substantial patient cohort, coupled with the straightforwardness of the implemented models, it is feasible to attain notably robust results in AD classification.

3.
Schizophr Res ; 261: 36-46, 2023 11.
Article in English | MEDLINE | ID: mdl-37690170

ABSTRACT

Electroencephalography is a method of detecting and analyzing electrical activity in the brain. This electrical activity can be recorded and processed to aid in the clinical diagnosis of mental disorders. In this study, a novel system for classifying schizophrenia patients from EEG recordings is presented. The developed algorithm decomposes the EEG signals into a system of radial basis functions using the method of fuzzy means. This decomposition helps to obtain the information from the various electrodes of the EEG and allows separating between healthy controls and patients with schizophrenia. The proposed method has been compared with classical machine learning algorithms, such as, K-Nearest Neighbor, Adaboost, Support Vector Machine, and Bayesian Linear Discriminant Analysis. The results show that the proposed method obtains the highest values in terms of balanced accuracy, recall, precision and F1 score, close to 93 % in all cases. The model developed in this study can be implemented in brain activity analysis systems that help in the prediction of patients with schizophrenia.


Subject(s)
Deep Learning , Schizophrenia , Humans , Schizophrenia/diagnosis , Bayes Theorem , Electroencephalography/methods , Algorithms , Support Vector Machine , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...